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Abstract

Through the lens of a nonlinear dynamic factor model, we study the role of exoge-
nous shocks and internal propagation forces in driving the fluctuations of macroeco-
nomic and financial data. The proposedmodel 1) allows for nonlinear dynamics in the
state and measurement equations; 2) can generate asymmetric, state-dependent, and
size-dependent responses of observables to shocks; and 3) can produce time-varying
volatility and asymmetric tail risks in predictive distributions. We find evidence in
favor of nonlinear dynamics in two important U.S. applications. The first uses interest
rate data to extract a factor allowing for an effective lower bound and nonlinear dy-
namics. Our estimated factor coheres well with the historical narrative of monetary
policy. We find that allowing for an effective lower bound constraint is crucial. The
second recovers a credit cycle. The nonlinear component of the factor boosts credit
growth in boom times while hinders its recovery post-crisis. Shocks in a credit crunch
period aremore amplified and persist for longer comparedwith shocks during a credit
boom.
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1 Introduction
What are the drivers of financial and macroeconomic variables - external shocks or endogenous
propagation? This is a timeless question in economics. Understanding the origins of economic
fluctuations becomes ever more important during downturns because of their implications for the
scope of economic policies. To address this question, dynamic factor models (DFM) have played
a crucial role (Stock and Watson, 2016). Since their introduction in the 1970s, DFMs have relied
mostly on a vector autoregressive representation that imposes a linear relation between the factor
today and its past as well as between the factor and the observables.1 However, there is substantial
evidence showing that economic variables possess significant nonlinearities (Baker et al., 2016,
Fernández-Villaverde et al., 2015b, Justiniano and Primiceri, 2008). Furthermore, financial data
are more prone to sudden changes, particularly so during times of crises (Gilchrist and Zakrajsek,
2012, Ludvigson et al., 2021). In this paper, we study macroeconomic and financial data through
the lens of a dynamic factor model that incorporates nonlinearities in the measurement and state
equations.

The nonlinearities in the DFM allow us to exploit many features emphasized in the recent
macroeconomic and financial literature that previous work on factor models have largely left un-
explored. For example, we can use our new nonlinear dynamic factor model (NLDF) to examine
the importance of nonlinear dynamics in the state equation during moments of high volatility in
the economy such as the Global Financial Crises (GFC); to construct point and predictive density
estimators in the presence of nonlinearities; and to study the truncated relation between factors
and observables as in the shadow interest rate literature (Wu and Xia, 2016). Importantly, we rely
on a coherent framework to simultaneously study all of these forces together.

Our nonlinear factor model is inspired by the pruned second order state-space (2ndSS) model
discussed in Kim et al. (2008) and Andreasen et al. (2017) as the approximate solution of a non-
linear dynamic stochastic general equilibrium model. As discussed in Fernandez-Villaverde et al.
(2016) and the references therein, an important feature of the pruned solution is that it can capture
several types of nonlinearities with reasonable accuracy, a feature that we aim to exploit in this
paper. We re-interpret the 2ndSS framework in the context of a dynamic factor model whose factor
evolves according to the state-space model’s state equation. We allow the measurement equation
to be potentially nonlinear if economic theory suggests it. This accommodates situations where
the observables are bounded and allows for the presence of non-additive measurement errors.

The nonlinear state dynamics generate novel implications both in terms of the impulse response
1The standard representation follows:

Yt = ΛFt + et; Ft = Ψ(L)Ft−1 + vt.

Here, the first and second expressions correspond to the measurement and state equations, respectively.
The shocks et and vt are assumed normally distributed and independent over time and cross-sectionally. L
is the lag operator.
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functions (IRFs) and the predictive densities. Although the nonlinearities are specified at the factor
level, they are passed through to the observable variables via the measurement equation. The IRFs
produced by the model have three interesting properties. First, they are asymmetric, meaning that
positive shocks produce differently-shaped IRFs compared to same-sized negative shocks. Sec-
ond, they are state-dependent, meaning that the shapes and magnitudes of the IRFs are different
depending on initial conditions. Finally, they are size-dependent, meaning that one standard devi-
ation shocks generate different shapes in the IRFs compared to two standard deviation shocks. The
model has implications for higher-order moments as well, leading to rich distributional dynamics.
Despite homoskedastic and normally distributed innovations, the unconditional distribution of
the states is non-normal due to the asymmetries implied by the model. Moreover, the model gen-
erates predictive densities that have time-varying volatility and asymmetric tail risk movements.
The latter fact is a key property documented by Adrian et al. (2019) in the macro data.

With the NLDFmodel in hand, we analyze the role of external forces and internal propagation
in two macroeconomic and financial cases. In our first case, we estimate the shadow interest rate
model along the lines of Wu and Xia (2016). Our exercise extracts a common factor from a series
of U.S. forward rates while respecting the effective lower bound in the short-maturity rates. There
are two key differences from Wu and Xia (2016). First, we model the yields in first differences,
following the recommendations of Onatski and Wang (2021) and Crump and Gospodinov (2022).
Second, we investigate the possibility of nonlinear factor dynamics in the interest rates. This exer-
cise is motivated by the literature debating whether there were structural changes in the behavior
of longer-term yields brought about by the effective lower bound (ELB) constraining monetary
policy (Swanson andWilliams, 2014). Our nonlinear factor model provides one avenue to test this
question empirically because it allows for state-dependence.

We find that allowing for the effective lower bound constraint is crucial, both in terms of es-
timating a yield curve factor that coheres with the historical narrative of monetary policy and in
model fit. This result is in line with results found inWu and Xia (2016). There are two time periods
where the presence of the ELB affects the estimation results. The first is in the late 2003 and early
2004 period, when the fed funds rate declined to 1 percent. The second is the long spell in the zero
lower bound that began in the GFC. After allowing for the ELB constraint, however, we do not find
much evidence of nonlinear factor dynamics, which suggests that the dynamics of the entire yield
curve did not appreciably change upon entering the ELB period. The key nonlinearity to account
for is the lower bound constraint for the shorter-maturity yields.

Our second case estimates a nonlinear credit cycle as the common component of U.S. credit
growth dynamics across four sectors: nonfinancial business, household, financial, and public sec-
tors. The investigation is motivated by the extensive theoretical and empirical literature document-
ing the importance of credit growth and leverage in understanding the credit cycle and especially
nonlinear amplification of shocks (Bernanke et al., 1999, Brunnermeier and Sannikov, 2014, Schu-
larick and Taylor, 2012). We investigate the presence of common nonlinear dynamics across sectors
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in a time series context. Our nonlinear factor captures the slow rise and rapid declines common
across credit sectors. The results highlight the importance of a slow-moving second order factor
that boosts credit growth in boom times – notably beginning in the mid 1990s until the onset of
the GFC. Its collapse in the GFC plays a key role in the sluggish post-crisis recovery of credit. The
effects of the same-sized shock to the credit cycle factor is different depending on the state of the
economy. Shocks in a credit crunch period are more amplified and persist for longer compared
with shocks during a credit boom. Negative shocks lead to increases in the standard deviation of
the credit factor predictive distribution. The combination of the decline in mean and increase in
volatility generates larger movements in downside tail risk compared to upside risk.

Related Literature The literature has considered some forms of nonlinearities in factor models
like Markov switching, time-varying parameters, and stochastic volatility. However, to the best
of our knowledge, there is no work on models that allow for second order dynamics in the state
equation or general nonlinearities in the measurement equation. The classic example these days
of a nonlinearity in the data is the zero lower bound imposed on short-term interest rates. In gen-
eral, we find lower and upper bounds when we deal with percentages like labor market tightness,
transition probabilities, and job finding and separation rates, so investigating a factor model that
can deal with these situations is important.

Our work is particularly close to two recent papers in the literature. First, Aruoba et al. (2017a)
introduce the quadratic autoregressive process (QAR), which allows quadratic terms in lagged
regressors as well as GARCH features. Like our approach, they rely on the pruned representation
to generate a stable model but their study concentrates on univariate models and posits that the
observables follow the QAR. In contrast, our factor model framework can be modified to admit
different classes of nonlinearities like the one introduced by the effective lower bound.

Second, Gorodnichenko andNg (2017) use the insights from the second order solution of DSGE
models to obtain restrictions on the dynamics of observables and its squared values. From this,
the authors extract a factor that mimics the dynamics of a level state variable and another one that
displays stochastic volatility features. There are important difference between our papers. While
Gorodnichenko and Ng (2017)’s approach is based on the approximated solution proposed by Be-
nigno et al. (2013), our representation arises from the perturbed solution of a nonlinear dynamic
stochastic general equilibrium model (Andreasen et al., 2017). They extract factors based on sin-
gular value decomposition. In contrast, we estimate the nonlinear system using likelihood-based
methods, which allows us, among other things, to build predictive densities, filter the most likely
state of the economy, or report IRFs conditional on the state of the economy. Finally, Gorodnichenko
and Ng (2017)’s methodology requires that observables be measured without error and rules out
the possibility of kinks in the data.

More broadly, we contribute to the large literature on factor models. An in-depth review of
linear factormodels is given by Stock andWatson (2016). Among the recent advances, Banbura and
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Modugno (2014) allow for missing data with arbitrary patterns in estimating linear factor models
by using an expectations maximization algorithm. Chauvet (1998) uses a linear factor model with
regime switches to estimate business cycles. Aruoba and Diebold (2010) leaves nonlinear factors as
a to-do task, although with a focus onMarkov switching regimes rather than the type we propose.
Shintani (2005) estimates a nonparametric diffusion model for forecasting Japanese data. Chen
et al. (2021) analyzes a semiparametric panel data model where latent factors are modeled in a
nonparametric fashion. Cheng et al. (2016) proposes a linearDFM that allows for breaks in loadings
and/or the number of factors, which is an alternative view of the world. They find that the Great
Recession led to a change in the factor loadings and the emergence of a new factor. Carrasco and
Rossi (2016) considers forecasting with misspecificed factor models.

Finally, our study is also related to work that departs from Gaussian shocks (Gourieroux et al.,
2019). Aruoba et al. (2021) estimate a structural VAR model that allows coefficients to switch de-
pending onwhether the economy is at the ELB. The results on the distributional implications of the
NLDF also connect us to a growing literature on tail risks and distributional asymmetries (Adrian
et al., 2019).

The rest of the paper is organized as follows. The next section discusses the nonlinear dynamic
factor model using a simple example with two observables. We motivate the factor model by con-
necting it to the pruned solution of a nonlinear DSGE model. In Section 3, we highlight the novel
implications of the nonlinear DFM formoments, IRFs, and predictive densities. Section 4 discusses
our two empirical applications. Some concluding remarks are in the final section.

2 The Nonlinear Dynamic Factor Model
In this section, we introduce the nonlinear dynamic factor model and then discuss the motiva-
tion for using our factor dynamics. Next, we discuss possible specifications of the measurement
equation. Finally, we close the section by presenting our estimation algorithms.

2.1 Model Specification

We consider the following nonlinear dynamic factor model:

Measurement: yt = G(ft) + ηεt (1)

Factor dynamics: ft = H(ft−1) + σνt. (2)

Here, εt is anN×1vector of iid N(0, IN ) innovations, νt is aK×1vector of iid N(0, IK) innovations,
yt is anN × 1 vector of observed variables, and ft is theK × 1 underlying factor. G(·) andH(·) are
general, possibly nonlinear functions. In addition, we assume that theH(·) function is at least twice
differentiable. η is an N ×N diagonal matrix of standard deviations and σ is aK ×K matrix that
is the square root of a variance covariance matrix. The additive measurement error assumption is
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for ease of exposition. Our framework can easily handle multiplicative errors like in Hwang (1986)
or nonadditive errors.

For empirical applications involving data such as unemployment, GDP growth, or inflation
rates, a typical desirable feature of the factor process is stationarity. A generic H(·) function, es-
timated using limited data range, may imply explosive dynamics of the factor and, thus, of the
observables. To avoid this problem, we use the pruned motion equation (Kim et al., 2008, An-
dreasen et al., 2017) that has easily-verifiable stationarity conditions.

To make the analysis more concrete, consider a NLDF model in which the measurement equa-
tion is linear in a single underlying factor andwe take a pruned second order approximation to the
function H(·). We adopt the single factor specification for the rest of the paper. Let ft denote the
underlying factor and fft and f st its first and second order terms such that ft = c+ fft + fst . Then
the pruned system is

yt = Gft + ηεt
ft = c+ fft + fst – 1st and 2nd order factors

fft = hxf
f
t−1 + σνt

fst = hxf
s
t−1 + 1

2hxx

(
fft−1

)2
.

(3)

The first order term follows the same process as a linear dynamic factor model with persistence
parameter governed by hx. The exogenous shocks νt perturb the first order term on impact. The
second order term depends on the square of the lagged first order term, with hxx modulating the
importance this relationship. The second order term also has persistence determined by hx. The
exact structure of this process is discussed in detail as the second order solution to a dynamic
equilibrium model that prevents explosive paths (Andreasen et al., 2017).

There are two main attractive properties to this structure. First, the model allows for rich non-
linearities due to the presence of the second order term. Specifically, the model can generate asym-
metric, state-dependent, and size-dependent impulse response functions (IRFs). Moreover, the
model can generate time-varying volatility through the state-dependence. We will illustrate these
properties in detail in Section 3. Second, the model has easily verifiable stationarity conditions. As
long as |hx| < 1, the model is stationary.

The presence of the quadratic term hxx introduces an additional distinction relative to the linear
factor model. Even if the shocks have zero mean, the factor has a mean different from zero. This
can be verified by applying the expectation operator on the second order term in equation 3. In the
dynamic equilibriummodels literature, hxx makes the model’s deterministic steady state different
from its stochastic steady state. We include a constant c in the factor’s law of motion to adjust the
overall factor to have zero mean in our applications, although this parameter may alternatively be
estimated.
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2.2 Motivating the NLDF Model

Our time series model is closely connected to the nonlinear solution of a DSGE model, which we
view as an important strength of our framework. Nonlinear DSGE models have rapidly grown in
popularity, spurred on by an ample body of empirical researchwhich documents that theU.S. econ-
omy has nonlinear features such as stochastic volatility (Justiniano and Primiceri, 2008, Fernández-
Villaverde andRubio-Ramírez, 2007, Bloom, 2009, Fernández-Villaverde et al., 2015a), time-varying
monetary policy (Fernández-Villaverde et al., 2015b), and the zero lower bound on short-term in-
terest rates (Fernandez-Villaverde et al., 2015, Gust et al., 2017, Wu and Xia, 2016).

Our NLDF model is the direct time series analogue of the pruned second order perturbation
DSGE solution. Suppose there is only one state variable (denoted ft) in the DSGEmodel. Then, its
dynamic equation is approximated by

State equation: ft = fft + f st (4)

fft = h1f
f
t−1 + σνt

f st = h1f
s
t−1 +

1

2
h2

(
fft−1

)2
.

Here, h1 and h2 are coefficients and ν is a normally distributed innovation. Comparing Equations
3 and 4, we see that their structures are the same. The key difference is that in the DSGE model
solution, h1 and h2 are known given the deep parameters of the model. In our time series model,
the corresponding parameters are estimated from the data.

If the researcher believes that the fundamental driver of the data is the one in Equation 4, it
seems natural to advocate for the extraction of factors based on an approach that departs from
linearity. Incorrectly assuming a linear factor model, and thereby ignoring the fst term, results in
an estimated factor that is driven by counterfactually volatile shocks. That is, the researcher would
conclude that fluctuations are in a large part due to exogenous events as opposed to endogenous
propagation.

2.3 Specification of the Measurement Equation

Given the nonlinearities modeled in the latent factor, a natural benchmark case is for the measure-
ment equation to be linear, as in Equation 3. The linear measurement equation allows us to prove
that the latent factor is not identified, and an additional normalization is needed. We close the
section by discussing some nonlinear measurement equation extensions.

Identificationwith LinearMeasurement Equation Webegin bydiscussing an identification
issue with the linear measurement equation case. To show this, it is convenient to use a two-
observable version of our model with a single factor:
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y1,t
y2,t

 =

G1

G2

 ft + ηεt,

ft = c+ fft + fst ,

fft = hxf
f
t−1 + σνt,

fst = hxf
s
t−1 +

1

2
hxx

(
fft−1

)2
.

(5)

In this system, the unknown parameters are the loading componentsG1 and G2, the factor’s linear
and quadratic terms hx and hxx, the standard deviation of the shock σ, and the standard deviations
of the measurement errors η.

Proposition 2.1. The sign and scale of the factor in the nonlinear factor model in Equation 5 are not
identified.

Proof. Consider the following constant n 6= 0 and scale the system in equation 5 as follows:

y1,t
y2,t

 =

G1

G2

( 1

n

)
nft + ηεt

nft = nc+ nfft + nfst

nfft = hxnf
f
t−1 + nσvt

nfst = hxnf
s
t−1 + n

1

2
hxx

(
1

n

)2 (
nfft−1

)2
.

Next, define f̃t = nft, G̃1 =
(
1
n

)
G1, G̃2 =

(
1
n

)
G2, σ̃ = nσ, h̃xx =

(
1
n

)
hxx, c̃ = nc and rewrite the

system as follows: y1,t
y2,t

 =

G̃1

G̃2

 f̃t + εt

f̃t = c̃+ f̃ft + f̃st

f̃ft = hxf̃
f
t−1 + σ̃νt

f̃st = hxf̃
s
t−1 +

1

2
h̃xx

(
f̃ft−1

)2
(6)

This shows that the “tilde” model produces exactly the same observables as the baseline model.
Therefore, not all parameters in the model are identified. Moreover, since n can be negative, we do
not have sign or magnitude identification.

In our applications, we fixG1 = 1. This corresponds to the named factor approach in the DFM
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literature (Stock and Watson (2016)).

Nonlinear Measurement Equation Although the linear measurement equation is a leading
case, in some instances, economic theory may suggest specifying nonlinearities in the measure-
ment equation. Our model can accommodate these more complex dynamics. For instance, one
could allow for a fully nonlinear measurement equation:

y1,t
y2,t

 = G

ft, η1ε1,t
ft, η2ε2,t

 ,

ft = c+ fft + fst ,

fft = hxf
f
t−1 + σνt,

fst = hxf
s
t−1 +

1

2
hxx

(
fft−1

)2
.

Here, G is the nonlinear function mapping from measurement errors and factors to observables.
In our shadow interest rates application, we specify a condition that restricts the level of interest

rates from going below a lower bound via a nonlinear measurement equation, consistent with the
zero lower bound restriction on nominal rates.

2.4 Estimation Algorithms

We use Bayesian methods to estimate the model. As our model is nonlinear, we rely on particle
filtering methods to approximate the likelihood (Särkkä, 2013). We use two algorithms in our
empirical illustrations: a Metropolis Hastings combined with the bootstrap particle filter and a
Gibbs sampling combined with the particle smoother. We believe each has their strengths. The
particle filtering algorithm readily delivers the filtered factor, which may be useful in situations
wheremaintaining the information structure of the filtered variable is important, such as when the
filtered variable is included in a vector autoregression (Fernández-Villaverde et al., 2015a). A caveat
of the bootstrap particle filter is that it demands hundreds of thousands of particles to characterize
accurately the likelihood function. The particle Gibbs sampling algorithm delivers the smoothed
estimate, which is the most accurate estimate of the factor given all of the data. Also, through its
exploitation of ancestor sampling (Lindsten et al., 2014), the algorithm has goodmixing properties
even with relatively few particles – in the order of hundreds. The disadvantage is that the sampler
is only approximate for our model, although Lindsten et al. (2014) shows that its performance is
still good.2 Further details about both algorithms and their computational implementation can be
found in Appendix Section A.

2See the associated discussion in Section 7.2 of that paper.

9



Monte Carlo In the Appendix Section B, we conduct a Monte Carlo exercise to study the es-
timation performance. First, we show that if the data generating process is the nonlinear factor
model itself, our estimation strategy can recover the true parameter values. Second, we find that
the likelihood implied by a linear factor model is below the likelihood from the nonlinear model
if the data were generated from our NLDF. By ignoring the nonlinear dynamics, the linear model
tends to estimate a excessively persistent linear factor.

3 Properties of the Nonlinear Dynamic Factor Model
We nowmove on to some key properties generated by the NLDFmodel. Our focus is on the latent
factor with the understanding that these properties propagate through to the observables via the
measurement equation.3 We focus on three novel features that ourNLDFmodel brings to the table:
asymmetric responses to positive versus negative shocks, state-dependent responses, and size-
dependent responses. These properties of IRFswere previously discussed in the context of solution
methods to DSGEmodels in Andreasen et al. (2017), but we find it instructive to review them here.
A linear dynamic factor model cannot deliver these types of impulse response functions.

3.1 Analytical Properties of the Model

We begin by discussing the analytical properties of the model. We canwrite the factor dynamics in
a useful state space form, first presented in Andreasen et al. (2017), to make analytical progress on
the model’s implications for the moments of the factors. To facilitate the exposition, let us continue
to assume a one-dimensional factor. Then one can write the factor dynamics as follows:

ft = c+ fft + f st (7)


fft

fst(
fft

)2
 =


hx 0 0

0 hx
1
2hxx

0 0 h2x




fft−1

fst−1(
fft−1

)2
+


σ 0 0

0 0 0

0 σ2 2σhx




εt

ε2t

fft−1εt

 (8)

For ease of notation, we write the state space as follows:

zt = Azt−1 +Bζt (9)
3The relationship between the properties of the factor and the observables is most straightforward in the

benchmark case of a linear measurement equation. With a nonlinear measurement equation, there will in
general be a nonlinear transformation of the latent factor to the observable variables.
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where zt =


fft

fst(
fft

)2
 and ζt =


εt

ε2t

fft−1εt

. The matrices A and B contain the corresponding

parameters in the state equation. It is possible to show that the innovations ζt are intertemporally
uncorrelated, in other wordsE [ζt+iζt+j ] = 0 for i 6= j. In this section, when discussing conditional
moments at time t, the conditioning set is the past history of factors {fft , fst , f

f
t−1, f

s
t−1, ...}.

First Moment Dynamics We begin by discussing first moment dynamics. We emphasize four
parts: the persistence of the factor, asymmetry in the impulse response to a positive versus negative
shock, state-dependency in the response, and size-dependency in the response.

The overall factor has persistence from both the first and second order factors. The first order
factor, fft , has a persistence equal to hx. The second order factor, fst , has a persistence greater than
hx. This is because while fst follows an autoregressive process with parameter hx, its "innovation"
depends on

(
fft−1

)2
, which itself is persistent with parameter h2x. As long as hx > 0, which is

usually the case for macroeconomic and financial data, the second order factor is more persistent
than the first order one.

The ε2t component of the innovation generates an asymmetric response to a positive versus neg-
ative shock. This is because while a positive shock increases εt – and therefore fft – and a negative
shock decreases it, both a positive and negative shock increases ε2t . The important parameter gov-
erning the direction of the asymmetry is hxx. This parameter governs how

(
fft−1

)2
relates to fst ,

and therefore how the effects of ε2t pass through to the overall factor. If the sign of hxx is positive,
then a positive shock increases fft and the response of ε2t increases fst . A negative shock decreases
fft but the response of ε2t still increases f st . The effect is reversed if the sign of hxx is negative.

The impulse response is state-dependent, which comes from the fft−1εt term in the innovation.

The sign of fft−1 determines the effect of a shock to εt on
(
fft

)2
. Additionally, themagnitude of fft−1

determines the amount of time-varying volatility, which we discuss more in the next subsection.
The ε2t term also creates size-dependencies in the response to a shock. This means that a two

standard deviation shock does not generate double the responses of a one standard deviation
shock. This effect follows straightforwardly from the quadratic transformation. This is an impor-
tant feature of our model because it can generate strong amplification to shocks during downturn
episodes.

The general formula for conditional mean dynamics at horizon h is shown in Equation 10. On
top of the previous discussion, there are two additional points tomention from this equation. First,
the hx term determines the persistence property of the entire system, as is expected. If |hx| < 1,
the conditional mean responses converge. Second, the ε2t innovation produces a non-zero long-run
mean for

(
fft

)2
.
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Etzt+h = Ahzt +

h−1∑
i=0

Ai


0

0

σ2

 (10)

Volatility Dynamics The model generates time-varying volatility via the state-dependence in-
herent in the second order factor. The magnitude of fft−1 modulates the effect of εt on

(
fft

)2
. A

larger value of fft−1 means that the same-sized shock generates a larger response in
(
fft

)2
. In-

tuitively, the quadratic component of the model responds by more the further fft−1 is away from
0.

Vt (zt+h) =
h−1∑
i=0

AiBVt (ζt+h−i)B
′ (A′)i (11)

Vt (ζt+h) =


1 0 hh−1x fft

0 2 0

hh−1x fft 0 Et

((
fft+h−1

)2)
 (12)

The formula for the h-step ahead conditional variance of the system is shown in Equations 11
and 12. The latter equation shows that it is the fft−1εt term that generates time-varying volatility

in the system. The conditional variance from this term depends on
(
fft−1

)2
and therefore has a

persistence of h2x. As Equation 11 shows, the conditional variance of zt at various horizons is then
a discounted sum of the conditional variance of ζt from t+ 1 up through t+ h.

Relationship Between First and Second Moments Our model generates a non-zero corre-
lation between conditional first and second moments. This can be seen by noticing that

(
fft−1

)2
simultaneously determines the conditional mean of fst and the conditional volatility of shocks to(
fft

)2
. Simultaneous movements in mean and volatility is an important mechanism identified in

the growth-at-risk literature to generate asymmetric tail risk behavior (Adrian et al., 2019).
More formally, we can examine the conditional covariance between fft and

(
fft

)2
and fst .4 We

begin by discussing short-run conditional correlations and then move on to unconditional correla-
tions. These expressions can be derived from the general formulas in Equations 11 and 12. At one
step ahead, the conditional covariance between the first order factor and its square is:

Covt

(
fft+1,

(
fft+1

)2)
= 2σ2hxf

f
t (13)

4While we discuss the correlations between all of these variables at time t, keep in mind that it is
(
fft−1

)2
that affects the overall factor ft.
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As suggested by the earlier discussion on conditional mean dynamics, the sign of fft is impor-
tant. Specifically, if fft is positive, the conditional correlation between the two terms is positive as
well, and vice versa.5 To understand why this is the case, note that the shock εt+1 determines fft+1

while ε2t+1 and f
f
t εt+1 determines

(
fft+1

)2
conditional on knowing fft . The shocks εt+1 and ε2t+1 are

uncorrelated, so any nonzero covariance must come from fft εt+1. When fft is positive, then further
increases in the first order factor increase

(
fft+1

)2
and the correlation between the first order fac-

tor and its square is positive, while when fft is negative, further decreases in the first order factor
increase

(
fft+1

)2
and the correlation is negative.

At two steps ahead, the conditional covariance is:

Covt

(
fft+2,

(
fft+2

)2)
= 2σ2h2x

(
1 + h2x

)
fft (14)

Qualitatively, the same mechanisms are at play as in the one step ahead case. The correlation
is positive if fft > 0 and is negative otherwise. This is the case as both the first order factor and its
square have persistent dynamics. For example, if fft is positive, fft+1 is expected to remain positive
and therefore continue producing a positive comovement between the first order factor and its
square. The overall covariance is a sum of two terms because it takes into account shocks at t + 1

and t+ 2.
The conditional covariance between the second order factor and the first order factor squared is

0 at one step ahead as the second order factor at time t+1 is predetermined given time t information.
The conditional covariance becomes nonzero at two steps ahead and its value equals:

Covt

(
fst+2,

(
fft+2

)2)
=

1

2
hxx

(
Et

((
fft+1

)2 (
fft+2

)2)
− Et

((
fft+1

)2)
Et

((
fft+2

)2))
︸ ︷︷ ︸

Conditional one-step ahead autocovariance of
(
fft+1

)2
(15)

The two terms are tightly related because the second order factor directly loads onto past values
of the first order factor squared. As can be seen by examining Equation 15, the conditional covari-
ance is determined by two components: hxx and the conditional one step ahead autocovariance of(
fft+2

)2
. If hxx > 0, then increases in the first order factor squared generate increases in the second

order factor, and the conditional covariance is positive. The effects are reversed if hxx < 0. The
autocovariance term appears because the time t+ 2 value of the second order factor loads onto the
time t+ 1 value of the squared first order factor, so intertemporal dynamics play a role.

We contrast the short-run comovement behavior to unconditional comovements. The uncon-
ditional variance covariance matrix of the system is given by Equations 16 - 18:

5This result is assuming hx > 0, which is the empirically realistic range.
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V (z) = AV (z)A′ +BV (ζ)B′ (16)

V (ζ) =


1 0 0

0 2 0

0 0 E
(
ff
)2
 (17)

E (z) = (I −A)−1


0

0

σ2

 . (18)

The general form of V (z) is as follows:

V (z) =


X 0 0

0 X X

0 X X

 , (19)

where the X denotes non-zero values. Unconditionally, there is no correlation between the first
order factor and its square, or the first order factor and the second order factor. Although the first
order factor determines the time-varying volatility in the system, it unconditionally has zero cor-
relation with volatility. This is because the time-varying volatility depends only on the magnitude
of fft−1 and not its sign. As the unconditional distribution of fft is symmetric around zero, this
correlation is also zero unconditionally.

There is dependence, however, between the second order factor and the volatility in the system,
which induces a relationship between level and volatility even unconditionally. This is because the
first order factor squared enters as the driving force of the second order factor. Unsurprisingly, the
sign of hxx is important in governing this relationship, with a positive hxx generating a positive
dependence between level and volatility and a negative hxx generating a negative dependence.

3.2 Simulations

We use a parameterized version of the nonlinear model and simulation methods to further illus-
trate its properties. To this end, let us consider the baseline model with two observables:
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y1,t
y2,t

 =

G1

G2

 ft + ηεt

ft = c+ fft + fst

fft = hxf
f
t−1 + σvt

fst = hxf
s
t−1 +

1

2
hxx

(
fft−1

)2
,

(20)

The baseline parameterization is c = −1
2

hxxσ2

(1−hx)(1−h2x)
, G1 = 1, G2 = 2, hx = 0.45, hxx = 0.5, and

σ = 1. The setting of c guarantees that the overall factor f has zero mean. We start our discussion
with the impulse response functions implied by the model. Then, wemove on to the distributional
implications of the shocks. A key parameter in the analysis is hxx. Its sign determines the direction
of the asymmetry. We set hxx > 0, but if hxx were to be negative, then the asymmetries would be
flipped.

Impulse Response Functions We focus on the three novel properties that our factor model
can deliver: asymmetric, state-dependent, and size-dependent shocks.

As our model is nonlinear and state-dependent, there are two main issues when computing
impulse response functions. First, as discussed in Koop et al. (1996) and Goncalves et al. (2021),
in the presence of nonlinearities, the different notions of impulse response functions do not neces-
sarily coincide. We use the definition of impulse response functions suggested by Goncalves et al.
(2021).

IRFδ,t−1 [ft+h] = E [ft+h (δ)− ft+h|Ωt−1] (21)

where Ωt−1 = {fft−1, f
f
t−2, ..., f

s
t−1, f

s
t−2, ...}, δ is the size of the innovation, ft+h is the baseline value

conditional on a path of shocks {νt, νt+1, ...}, and ft+h (δ) is the counterfactual value conditional
on the same path of shocks except with the addition of δ at time t {νt + δ, νt+1, ...}.

This definition of IRFs has several properties. First, it integrates out the effects of future shock
uncertainty, similarly to the generalized impulse response function. Second, as the time t shock
is added onto a baseline path, the exercise is best thought of as showing the effects of perturbing
the time t innovation νt by δ. This is a slightly different thought experiment when compared to
the generalized impulse response function one, in which the time t shock is fixed at δ in the coun-
terfactual case (Koop et al., 1996). We prefer the definition suggested by Goncalves et al. (2021)
because it maintains randomness in the period of the shock, which has important implications
when thinking about higher-order moments and the distribution. Finally, our impulse response
functions are state-dependent. We are explicit in our conditioning set to make this dependence
clear to the reader.
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Webegin by discussing the asymmetric responses to shocks. The first row in Figure 1 shows the
IRFs of the factor following a one-standard deviation positive innovation (left panel) and a negative
one (right panel), initializing the first order factor ff−1 at 0.56 and the second order factor fs−1 at its
unconditional mean value. This calibration is illustrative, and we choose a nonzero lag of the first
order factor to showcase the state-dependency in the IRFs. The figures plots the dynamics of the
factor (blue line) and its first (black dashed line) and second order (black line) components. These
IRFs illustrate the asymmetry that the model can generate. Specifically, with this parameterization
and initial condition, a positive shock persists for longer than a negative shock. This can be seen
by comparing the impulse response with its first order component. The first order component is
linear and therefore symmetric. It produces impulse responses that are representative of those that
come from a standard dynamic factor model. The blue line is formed by adding up the first order
and second order components together. Given the initial conditions and the fact that hxx > 0, the
second order term is always positive in this example. This means that the blue line is always above
the first order response, no matter whether the shock is positive or negative.

The second row of the figure illustrates the next important property that our model can pro-
duce: state-dependence. The solid blue line is the same response as in the top row. The dashed
black line now shows the responses to the same sized shock, but starting at an initial condition of
ff−1 = 3.33 and fs−1 at its unconditional mean. Although the initial impulse is the same, as can
be seen by the identical response at time 0, the effects of the state-dependence kick in with a one
period lag. Starting from the different initial condition with an elevated first order factor, both
positive and negative shocks generate larger magnitude of responses in the factor. This can un-
derstood by examining Equation 8. The lag of the first order factor determines the volatility of εt
in the third equation governing

(
fft

)2
, with a fft−1 that is larger in magnitude leading to a higher

variance of εt.
The responses shown in the second row of the figure lead us to another related fact, which we

illustrate inmore detail in the section on distributional responses to shocks but isworthmentioning
here. The different amplification of shocks is indicative of time-varying volatility. This example
illustrates that when the first order component starts out at a larger value in magnitude, the overall
nonlinear factor also becomes more volatile. We contrast this state-dependence with factor models
of exogenous stochastic volatility, such as Del Negro and Otrok (2008), where movements in the
volatility of the factor are due to separate shocks.

Finally, the third row of Figure 1 shows the size-dependence of the impulse response functions.
What we mean by this is that the shape of the impulse response function changes depending on
the size of the shock. The blue line is the same one that we have carried over from the previous
rows. The dashed black line is the response at the same initial conditions, but to a shock that is two
standard deviation in size instead of one standard deviation. On impact, the response is double
that of the one standard deviation shock. In the next period, however, the shapes of the impulse
response function change for positive and negative shocks. This fact is especially clear in this ex-
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Figure 1: Row 1: Asymmetric responses to the same-sized shock in a calibrated model. This figure shows
the effects of a positive shock on the left panel in blue. The dashed black line is the first order response while
the solid black line is the second order response. Row 2: State-dependent responses in a calibrated model.
The responses to a positive shock are in the left panel with the blue line being the same as in Row 1 and the
dashed black line the response to the same shock but at a different initial condition. Row 3: Size-dependent
responses in a calibrated model. The responses to a positive shock are in the left panel with the blue line
being the same as in Row 1 and the dashed black line the response to a shock twice the size as the one that
generates the blue line. In all rows, the right panel shows the responses to a negative shock.

ample after a negative shock, in which the impulse response function turns positive two periods
after impact following a two standard deviation shock, while it stays negative following a one stan-
dard deviation shock. This is because a two standard deviation change to the first order component
changes the second order component by more than double that of the first order component. This
greater-than-proportionate response of the second order component generates the different shape
of the overall impulse response function.
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Distributional implications

Despite beingdriven bynormal, homoskedastic shocks, theNLDFmodel produces rich non-normalities
in the distribution of the factor, which then feeds into the distribution of the observables. We begin
by discussing the unconditional distribution of the factor. Next, we move on to the time-varying
volatility and tail risk that our model can produce.

Figure 12 in Appendix Section C shows the distribution of the factor produced by a long simu-
lation of the model. The distribution produced by the NLDF model is not normal, as is evidenced
by its positive skew. Its Kelley skewness, which measures the share of the distance from the 90th
percentile to the 10th percentile that is above themedian versus below themedian, is 0.07.6 By con-
trast, the distribution produced by the first order component is normally distributed, and therefore
has a Kelley skewness of 0.

Focusing only on the unconditional distribution, however, masks important dynamics of the
distributions following disturbances. In Figure 2, we illustrate this feature of our model by simu-
lating the predictive distributions at various horizons following the same one-standard deviation
shock that we began discussing in the top row of Figure 1.7 The blue distribution is the baseline
density – the one that characterizes the possible outcomes if we simulate the model from the ini-
tial conditions. The dashed black line is the density that realizes if we had a positive one standard
deviation shock at period 0. Our model implies that such a shock leads to a positive shift in the
distribution on impact. Crucially, in period 1, the distribution widens out. The differences in the
distributions persist through period 3 and by period 10, the effects of the shock are largely gone.

Figure 3 shows the impulse response functions of the first and higher-order moments to the
shock. For the standard deviation and tail risk responses, we compute the impulse response func-
tions as differences in the standard deviation and shortfall and longrise of the +1 Shock and Base-
line distributions. The standard deviation of the distribution increases, peaking in the first period
after the shock. These effects lead to a large rise in the 5% longrise, as the combination of a rise
in the mean and increase in the standard deviation work together to greatly increase the upside
tail risk. The 5% shortfall also increases, but by much less, as the mean increase is counteracted by
the increased standard deviation. Therefore, through movements in the higher-order moments of
the distribution, the model can generate distinct asymmetries in the movements of the upper and
lower tails of the distribution, in line with the stylized facts documented by Adrian et al. (2019).
These IRFs also reinforce the fact that our model can generate time-varying volatility through the
nonlinear dynamics.

Figures 13 and 14 in Appendix Section C show the corresponding distributional responses to
a one standard deviation negative shock. A negative shock lowers the mean and decreases the

6The formula for Kelley skewness is Q90+Q10−2∗Q50
Q90−Q10 where Q is the quantile of the distribution.

7We generate these distributions by simulating 100, 000 paths from the initial condition. In the baseline
case, we take draws from the DGP. In the "+1 Shock" case, we add a one standard deviation shock to the
impact period’s innovations from the baseline. After the impact period, we use the exact same draws of the
innovations in both scenarios.
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Figure 2: Dynamics of the distribution of the demeaned overall factor at various periods after a shock in
a calibrated model. The blue line is the distribution after a positive shock and the dashed black line is the
distribution without a shock. Period 0 is the period of the shock.

standard deviation of the distribution. These factors together again generate a more persistent
negative movement in the longrise, but less persistent effects on the shortfall. Comparing the pos-
itive and negative responses, one feature we see is that the asymmetries we document for the first
moment also carry over to higher moments as well. The declines in the standard deviation and tail
risk are smaller in magnitude when compared to the increases in those features of the distribution
following a positive shock.

3.3 Variants to NLDF

Before we move to the estimation section, we briefly discuss potential ways in which the model
could be extended to study data that demands a richer factor structure.
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Beyond a 2nd-order Representation

Our choice of the 2nd-order pruned representation for the factor dynamics is based on its being
parsimonious and the familiarity that macroeconomists have on perturbation methods. But our
exposition is general enough that one can use, for example, projection methods to approximate
the functions G and H. This alternative can capture richer nonlinearities that monomials cannot
model. Let Ψi(·) denote the Chebyshev polynomial of degree i. Then the nonlinear state equation
can be approximated by

ft =

n∑
i=0

θiΨi(f̃t−1) + σνt.

Here, θi are parameters to be estimated and f̃t−1 is a transformation of the original t−1 factor such
that is bounded between -1 and 1.8 However, this option comes at the cost of potentially more
complex likelihood when estimating the model.

8This transformation is necessary because Chebyshev polynominals are defined in the interval [−1, 1].
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Multidimensional state

One can in theory easily expand our model to accommodate more factors. Below we still use 2
observables but we add an additional factor.y1,t

y2,t

 = G
2×2

x1,t
x2,t

+ η
[2×2]

εt
[2×1]

,

x1,t
x2,t

 = H

x1,t−1
x2,t−1

+ Σ
2×2

νt.

Here, the functionH(·) is the nonlinear map between the factors yesterday and the factors today. If
one extends the pruned representation from above to the two-factor case, the results from Propo-
sition 2.1 carry over. Specifically, two factors must be named; i.e., their loadings in two of the
observable equations must be set to 1.

4 Macro & Finance Applications Revisited
Now we use the nonlinear factor model to study the role of exogenous and internal forces in the
dynamics of macro and financial series. We have two empirical applications. First, we estimate a
shadow rate model motivated by the work of Wu and Xia (2016). Second, we estimate a nonlinear
credit cycle factor.

4.1 Shadow rate

Short-termyields have recently hit their lower bound constraints, promptingmodifications to exist-
ing yield curvemodels to account for this behavior. An important advancement camewithmodels
that considered an ELB constraint on short-term yields and thereby allowed the latent yield curve
factor to turn negative. Notably, Wu and Xia (2016) showed that these shadow rate models deliv-
ered ameaningful measure of monetary policy conditions even when the short rate was stuck near
zero.

The usual assumption made in shadow rate models is that the yield factor dynamics are linear
and do not change upon entering the ELB. Implicitly, this assumption presumes that the economy
does not undergo structural changes due to constrained monetary policy, which is at odds with
some of the theoretical literature (Fernandez-Villaverde et al., 2015, Aruoba et al., 2017b) and sup-
ported by others (Wu and Zhang, 2019, Bernanke, 2020). Some empirical studies have investigated
whether structural changes in the economy occurred as a result of the ELB constraining policy
(Swanson and Williams, 2014, Debortoli et al., 2019, Wu and Zhang, 2019, Aruoba et al., 2021).
Among these works, one of particular relevance for our purposes is Swanson andWilliams (2014),
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who investigate if the behavior of yields at longer-term maturities in response to news changed
during the ELB.

Ourwork contributes to this debate by investigatingwhether there is evidence of nonlinearities
in the factor dynamics of a shadow rate model. We simultaneously model ELB restrictions on
the yields in the measurement equation and nonlinear factor dynamics. If there were structural
changes in the yield curve movements due to the ELB, our model would be able to capture them
through the second order factor. Another contribution of our work is that we model the yields in
first differences instead of levels and we show how to do so while accounting for the ELB (Onatski
and Wang, 2021, Crump and Gospodinov, 2022).

Empirical Setup We estimate our model on the first differences of one month forward rate data
at 3 months, 6 months, 1, 2, 3, 5, and 10 year maturities from February 1990 to September 2019,
following Wu and Xia (2016) to construct the data.9 We impose a 0.3% effective lower bound on
the series.

We consider the following model of differences in forward rates:

∆forwardht = mh +

Gh(c+ fft + fst ) + ηhεht if Ŝht >= 0.3

−mh + ηhεht otherwise
(22)

where c = −1
2

hxxσ2

(1−hx)(1−h2x)
, Ŝht =

∑t
τ=2

(
mh +Gh

(
c+ ffτ + fsτ

))
+ forwardh1 , ∆forwardht =

forwardht −forwardht−1, and index h stands for the maturity. Wemodel the latent factor according
to our second order dynamics:

fft = hxf
f
t−1 + σνt (23)

fst = hxf
s
t−1 +

1

2
hxx

(
fft−1

)2
We normalize the factor loading G1 on the 3−month rate to be 1. We also allow for yield-specific
constantsmh that capture any differences in the average forward rate changes across maturities.

There are two key nonlinearities in the model. First, there is an ELB constraint in the measure-
ment equation, which removes any influence of the factor if it predicts a rate lower than 0.3% in
levels. Instead, the measurement equation is set to ∆forwardht = ηhεht . At the ELB, the observed
change in the forward rate should be 0% as the level is stuck at 0.3%. The measurement error picks
up a residual difference. Second, the latent factor dynamics are allowed to be nonlinear.

We estimate the nonlinear model using Metropolis Hastings combined with the bootstrap par-
ticle filter.10 Weuse 500, 000particles in the particle filter. We take 510, 000draws from the posterior
distribution with a burn in of 210, 000. We construct the posterior distributions for our results by

9Further details about the data construction can be found in Appendix Section D.
10The estimation details and prior distributions can be found in Appendix Sections A and D.
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taking every 100th parameter draw from the remaining 300, 000 draws.
As a comparison, we also estimate a linear version of themodelwherewe do notmodel the ELB

in the measurement equation and impose linear factor dynamics.11 Insofar as the nonlinearities
we consider are empirically important, the nonlinear model should fit the data better than the
linear model does. If the hxx term in the nonlinear model is estimated to be insignificant, then we
interpret that as evidence against state-dependent dynamics at the ELB.

Historical Estimates of the Forward Rate Factor We first discuss the historical filtered es-
timates of the forward rate factor implied by our nonlinear model and compare it with a linear
model that does not account for the ELB restriction and imposes only linear factor dynamics. The
top panel in Figure 4 shows the filtered estimates of the factor produced by our nonlinear model.
The factor captures the contours of historical yield curve movements. For example, we catch the
rapid drop in short- and long-term rates in the early 1990s, which was then followed by a tighten-
ing cycle in monetary policy during the middle of the decade. In 1995-1996, the 10 year forward
rate dropped over two percentage points, which our factor captures. Moving on to the 2000s, our
estimated factor reflects the easing cycle in the early 2000s followed by tightening beginning in
2004. The factor then rapidly drops entering into the GFC. In the middle of the GFC, short-term
interest rates hit their ELB, which is highlighted by the gray area in the figure. Because our model
can account for an ELB in the measurement equation, however, it still estimates variability in the
factor, chiefly the continued decline in long-term rates. The lack of variation of shorter-termmatu-
rities leads to a widening of the uncertainty in the estimated factor as more forward rates hit their
ELB. Finally, as we exit the ELB, the factor captures the rise in short-term forward rates.

It is worth emphasizing that our factor matches some important events in recent monetary
policy (red lines in Figure 4). For example, there is a sharp decline in the factor in the aftermath of
9/11. A similar sudden drop is observed around the announcement of QE1. In contrast, the Taper
Tantrum of 2013 coincides with a rise in the factor. Interestingly, our estimated factor shows that
QE3 did not result in a change of the stance of monetary policy.

The bottom panel shows the corresponding filtered estimates from a linear model. Outside of
the highlighted ELB period in gray, the two models estimate similar factors, foreshadowing the
limited role played by the second order factor dynamics. During the ELB period, however, the
factor estimates diverge. The linear model is constrained by the fact that short-term forward rates
have no variation, so they are stuck at 0, while long-term rates continued to vary. Indeed, these
fluctuations in the longer maturity rates inform the dynamics of our factor during the zero lower
bound episodes. On balance, the linear model estimates little variation during the ELB period,
thereby sacrificing fit to the long-term yields.

Figure 5 shows the model implications for the filtered level of the shadow 3 month and 10 year
11We estimate this model with the Metropolis Hastings algorithm and the Kalman Filter. Further details

can be found in Appendix Sections D.
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Figure 4: Filtered estimates of the forward rate factor estimated by the nonlinear model (top panel) and
linear model (bottom panel) and 80% credible sets (blue shaded area). The gray shaded areas denote the
time periods in which the 3 month forward rate is at the ELB.

rates in red. We calculate this by ̂forward
h,sh

t =
∑t

τ=2mh + Gh

(
c+ fft + fst

)
+ forwardh1 . We

ignore the ELB restrictions placed on the forward rate, and so these estimates are best interpreted
as shadow rates (hence the sh in the superscript). In the top row, we also show the Wu and Xia
(2016) shadow federal funds rate in blue for comparison.

As our nonlinear model allows the shadow rate to go negative, we capture remarkably similar
dynamics to Wu and Xia (2016). Namely, our shadow 3 month rate continues to trend down into
2014 and 2015, before lifting off in early 2016. Wu andXia (2016) interpret the decline of the shadow
rates during this period as evidence of the effectiveness of unconventional monetary policy, the
effects of which can be seen in the decline of longer-term unconstrained rates. The influence of
the longer-maturity rates on the shadow rate between 2009 and 2015 can be seen in the inset at the
bottom left panel in Figure 5. Both the 10-year and the shadow rates feature a downward trend
and have broadly similar dynamics. In contrast, the linear model’s estimates do not capture any of
these movements in the ELB period, and we see a largely flat prediction of the 3 month rate from
the factor.

Importance of the Nonlinear Components How important are the nonlinear additions to
the model? From the filtered estimates, we see clear evidence that the ELB restriction tangibly
changes the factor estimates. Moreover, amarginal likelihood comparison between the twomodels
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Figure 5: Filtered estimates of the shadow 3 month forward rate (top row) and the 10 year rate (bottom
row) by the nonlinear model (first column) and linear model (second column). The red lines denote the
filtered estimates with 80% credible sets (red shaded area). The dot dashed magenta line is the observed
data. The dashed blue line is the shadow federal funds rate estimated by Wu and Xia (2016).

shows that the nonlinear model is heavily favored by the data at 640 versus 575 log points.12 Taken
together, these results suggest that allowing for nonlinearities is important to understand yield
curve dynamics.

The central question in our investigation is whether the ELB produced structural changes in
yield curve dynamics, and therefore changes in the behavior of longer-term forward rates that
were not constrained by the ELB. This question can be answered by examining whether the statis-
tical gains from the nonlinear model are primarily due to the ELB constraint on the measurement
equation, the second order factor dynamics, or both. Table 2 in Section D of the Appendix shows
the 80% credible sets of parameter estimates. There, we can see that the credible sets for hxx – the
key parameter that governs the second order factor – ranges from −0.01 to 0.47. These estimates

12We compute the marginal likelihood using the modified harmonic mean (Geweke, 1999). We use a
truncation parameter of 0.95. The results are similar for truncation parameters of 0.5 and 0.75.
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contain 0, and at best can be characterized as marginally significant, suggesting that higher-order
factor dynamics play a limited role. Second, we can also estimate a version of the model where we
maintain the ELB restriction in Equation 22, but we impose linear factor dynamics. This version of
the model produces filtered factors similar to the fully nonlinear model and fits the data slightly
better in a marginal likelihood sense (642 log points versus 640).

Our empirical evidence then is in favor of the idea that the ELB mainly was a restriction on
the behavior of short-term yields. There is little evidence of nonlinearities in the factor dynamics,
at least using our model. Therefore, dynamics of the factor continued to propagate linearly as in
unconstrained times.

4.2 Nonlinear Credit Cycle

Since the GFC, economists have once again taken a close look at the importance of credit growth
for macroeconomic fluctuations (Schularick and Taylor, 2012). Excessive credit buildups often pre-
cede financial crises and leverage can further amplify shocks. Moreover, it is not enough to focus
on one credit sector, but instead a broad monitoring framework is needed (Adrian et al., 2015).
For instance, Mian et al. (2017) emphasize the importance of household debt to GDP as a predic-
tor of lower GDP growth and higher unemployment worldwide. Corporate leverage may lead to
distorted investment decisions due to debt overhang effects (Gomes et al., 2016). Financial sec-
tor leverage can amplify shocks via the financial accelerator and binding borrowing constraints
(Bernanke et al., 1999, Gertler and Karadi, 2011). Finally, as discussed in Jorda et al. (2016), high
levels of public debt tend to prolong the pain of private sector deleveraging. Taking center stage
in these studies is the importance of credit growth.

Our second application investigates the importance of a common component in real credit
growth in the United States across the nonfinancial business, household, financial, and public
sectors from 1952:Q1 to 2021:Q4. Credit growth across different sectors may move together due
to common factors such as changes in risk appetite, financial technology, or structural reforms.
Moreover, economic theory suggests the potential importance of nonlinearities in determining the
dynamics of credit growth. Minsky (1977) describes an economy that may experience a rapid con-
traction in credit after a long boom with speculative lending as expectations rapidly change. Bor-
dalo et al. (2021) formalizes these dynamics in a model with diagnostic expectations. Several pa-
pers highlight the role of occasionally binding borrowing constraints in modeling U.S. business
and credit cycles (Brunnermeier and Sannikov, 2014, Guerrieri and Iacoviello, 2017). We view our
model as one avenue to check how important the nonlinear dynamics are in the data without need-
ing to resort to a fully-specified structural model.

We estimate a one factor version of our nonlinear factor model (Equation 3). We use a particle
Gibbs sampling algorithm with 100 particles and take 1.5 million draws from the posterior distri-
bution, burning in the first 600, 000. To form our posterior distribution, we take every 300th draw
for a total of 3000 draws. For posterior distributions of impulse response functions and distribu-
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tionalmoments, which require heavier computation, we use 1000 draws of the parameters. Further
details about the estimation, including the prior specification, can be found in Sections A and E of
the Appendix.

Credit Growth Dynamics Figure 15 in Appendix Ssection D shows the data that we use to es-
timate the model, which is normalized U.S. real credit growth in the nonfinancial business, house-
hold, financial, and government sectors. The data come from the Z.1 Financial Accounts data
provided by the Federal Reserve Board.13

Private credit growth generally increases during expansions and declines during recessions,
although the troughs of nonfinancial business and financial credit growth lag the troughs of reces-
sions. The three private credit growth series are fairly positively correlated, ranging from 0.4 to 0.5.
In the nonfinancial business and household sectors, credit growth exhibits an important asymme-
try, with expansions marked by steady strong growth and recessions associated with sharp violent
declines. These dynamics have implications for higher-order moments, with the Kelly skewness
of nonfinancial business credit growth at −0.23 and household credit growth at −0.15. Financial
credit growth experienced rapid declines in the GFC, but overall has a skewness close to 0.

On the other hand, government credit growth is mildly negatively correlated to the three other
series, owing to the fact that it has increased in recent recessions. The series has a distinct positive
skew due to several large spikes in public debt.

Historical Credit Cycle Estimates Our estimates provide evidence of a nonlinear factor that
we call the credit cycle. For identification purposes, we fix the factor loading for nonfinancial busi-
ness credit growth at 1. The factor positively loads onto the household and financial sectors, with
100% of draws being above 0 in both cases. Indeed, the posterior median of the factor loading on
household credit is 1.3, with nearly all draws above 1, while the posterior median of the loading
on financial credit is around 1. The factor therefore is heavily informed by the common cyclical
comovement of the three private credit growth series. The factor, however, also plays a role in un-
derstanding the public credit growth dynamics. It has a factor loading of −0.2 on the government
credit growth series, with nearly all draws less than 0. Therefore, the factor broadly captures the
correlation dynamics we documented in the data.

Figure 6 shows the smoothed factor estimates. In the top panel, the red line is the posterior
median of the nonlinear factor estimates along with the 68% credible bands.14 The credit cycle
factor was strong throughout the 1960s before the recession in 1969. It then rebounded before
collapsing again during the mid 1970s recession, with similar dynamics repeating again in the
late 1970s to early 1980s. The frequency of the credit cycle lengthened afterwards, with a robust
expansion in the 1980s before declining again in the late 1980s and early 1990s with the savings

13The details of the data construction can also be found in Section E of the Appendix.
14We show 68% bands instead of 80% in the previous application because we are using quarterly as op-

posed to monthly data (e.g. Stock and Watson (2016)).
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Figure 6: Smoothed factor estimates produced by the NLDF model. The top panel shows the demeaned
factor estimates, with the red line being the estimate of the nonlinear factor and the blue line the estimate
of the first order factor. The shaded areas denote 68% credible sets. The bottom panel shows the demeaned
second order factor with 68% credible sets.

and loan crises. Following that episode was a prolonged expansion through the 1990s and 2000s
before the collapse in the GFC. The recovery from the GFC was especially slow, with the credit
factor still below its mean even over 10 years after the recession. This finding points to a secular
stagnation in financial markets. That is, the GFC resulted in a significant and permanent change
in financial markets. Indeed, we can see that the stagnation captured by the factor arises from the
dynamics of credit in the household and financial sectors.

The blue line and shaded areas are the corresponding movements of the first order factor only
for comparison purposes. These are the counterfactual estimates of the factor if we had set hxx to 0

across all of the draws, holding all else equal. The bottom panel shows the estimates of the second
order factor adjusted to have 0 mean. The nonlinear component of the model was significantly
positive starting in the 1970s, providing a boost to credit growth. It then declined to negative
territory in the late 1980s during the savings and loan crisis. The factor again turned positive for
a 15 year stretch beginning in the early 1990s until the GFC, when the second order factor swung
heavily negative. This negative swing contributed to the sluggish recovery of credit growth post-
crisis.

Importance of the Nonlinear Factor How important is the nonlinear factor when modeling
the credit cycle? We answer this question in three ways. First, we look at the unconditional dis-
tribution of the nonlinear model compared to a counterfactual one with only the first order factor
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Table 1: Unconditional Moments Implied by the Nonlinear DFM and the Linear Factor Only

Skewness 5% Shortfall 95% Longrise Corr
(
fs,
(
ff
)2) Variance Decomp

Nonlinear −0.18 −1.91 1.22 −0.53 9.69

[−0.27,−0.07] [−2.59,−1.38] [1.08, 1.37] [−0.54,−0.51] [1.41, 25.78]

Linear Only −0.00 −1.34 1.33 − −
[−0.00, 0.00] [−1.49,−1.20] [−1.48,−1.19] − −

The table shows the Kelly skewness, 5th/95th shortfall and longrise, and the variance decomposition show-
ing the percentage of unconditional variation implied by the second order factor. "Nonlinear" refers to the
full model while "Linear Only" refers to a counterfactual in which hxx = 0 for all of the draws, keeping
everything else the same. The headline number is the posterior median while the numbers in brackets are
the 16/84 credible sets.

active. Second, we investigate the state-dependent effects of shocks conditioning on three time pe-
riods: the credit boom in the mid 2000s, the bust in the late 2000s and early 2010s, and amixed case
in the late 1980s. We find the last time period listed particularly interesting as it had a positive first
order and overall credit factor, but a negative second order factor. This is in contrast to the first two
time periods, in which the first and second order factors had the same signs. Finally, we look at
the standard deviation and tail risk effects of shocks. It is important to reemphasize that in a linear
dynamic factor model, shocks do not have state-dependent nor higher-order moment effects.

Unconditional Distribution

A key implication of the nonlinear model is that the unconditional distribution of the factor
is not normally distributed, even though the exogenous innovations to the system are. This is not
the case if we ignore the second order component. In examining the credit growth data, we saw
some evidence of asymmetries. These features of the data inform the estimation of the nonlinear
model. Table 1 shows that the nonlinear model generates a negative Kelly skewness, with mass
below the median of the distribution covering nearly 60% of the total distance from the 10th to the
90th percentiles. The credible sets of the skewness estimates are wide, reflecting the difficulty in
pinning down the magnitude of the higher order moments. However, there is evidence that the
skewness is negative at the 68th percentile credible sets, as seen in the table. This continues to be
the case at the 80th percentile sets as well. The second row of the table shows the corresponding
estimates for the linear only model. With a linear process and Gaussian shocks, the model cannot
generate any skewness.

The next two columns in Table 1 show the estimates of the lower and upper tails of the distri-
bution. As a reference, the mean of the factor by assumption is 0. The nonlinear model generates
a distribution that has higher probability on large declines in the credit cycle as opposed to large
increases. This asymmetric tail behavior is consistent with the negative skewness previously dis-
cussed. In comparison, the linear model generates symmetric tail behavior.
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Underlying the skewness and tail risk behavior of the model is a strong correlation between
the level and volatility components of the nonlinear factor. The second to last column of Table 1
shows the model-implied correlation between the second order factor, which enters into the level
of the nonlinear factor, and the square of the first order factor, which determines the conditional
volatility of the innovations to the second order factor. This correlation is −0.53, which suggests
that the conditional volatility of the credit cycle increases as the credit cycle declines. This is again
consistent with the idea that credit expansions are smoother than credit contractions. Moreover,
it can also generate the negative skewness and long lower tails coupled with short upper tails we
see.

In addition to examining deviations from normality, we can also compute the unconditional
variance decomposition of the overall factor into its linear and nonlinear components. If the second
order factor share of overall fluctuations is high, then it is further evidence that nonlinearities play
an important role in the credit cycle. The last column shows this variance decomposition for the
second order factor. Its median estimate is around 10%, indicating a secondary, although still
quantitatively relevant role. Similar to the results before, its credible set is wide.

State-Dependent and Asymmetric Effects of Shocks

Two key aspects of the nonlinear credit cycle are state-dependent and asymmetric responses to
shocks. Figure 7 shows the responses to one standard deviation positive and negative shocks to the
credit cycle factor. The red line and shaded areas are the responses from the nonlinearmodel while
the blue line and shaded areas are the responses from the linear model. The first row shows the
effects of a positive shock while the second row shows the effects of a negative shock. The columns
condition on the smoothed state estimates of three different time periods: a boom period in the
mid 2000s, the bust after the GFC in 2010, and a mixed case leading into the early 1990s recession.

During the credit boom period, where both the first order and second order factors were posi-
tive, the expected path of the credit factor actually behaves similarly to the linear only model. The
persistence of the first order factor, governed by the hx parameter has a posterior mean of 0.92,
with the nonlinear factor showing similar intertemporal dynamics. Moving to the credit crunch
period in 2010, the first and second order factors both were negative. This generates a response
to the shock that is more persistent and with a slight hump shape in the initial quarters. There is
a change in the conditional volatility of the shock when compared to the credit boom period as
well, with the magnitudes of the responses to the same sized shock larger in the quarters after its
realization. These findings are consistent with the unconditional distribution results, which found
a negative relationship between the level of the credit factor and its conditional volatility. The final
column of the figure shows a mixed period before the early 1990s recession. The smoothed first
order factor was positive but declining while the second order factor became negative. This combi-
nation of states leads to a response to the credit factor shock that dies out more quickly compared
to both the credit boom and crunch states. This is true both for a positive and negative shock.

In summary, the nonlinear model exhibits evidence of state-dependence in the responses to a
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Figure 7: State dependent IRFs produced by the NLDF model. The red lines denote the responses of the
overall factor following a positive shock (top row) and negative shock (bottom row) while the blue lines
denote the responses of the linear component of the model. The first column conditions on a credit boom
period in the mid 2000s, the second column conditions on a credit bust time period in 2010, and the final
column conditions on a mixed case before the early 1990s recession. The shaded areas denote 68% credible
sets.

shock. The results are in line with theoretical predictions as well. When the credit cycle is strong, a
credit factor shock behaves approximately linearly. These times correspond to periods of slack bor-
rowing constraints and easy credit (Guerrieri and Iacoviello, 2017). Times immediately after credit
crunches generate amplification and persistence as borrowing constraints tighten. Our empirical
results suggest that dynamics in the data are consistent with these theories.

We also comment briefly on the asymmetry in the responses to positive versus negative shocks.
Across all of the time periods, there is evidence that a negative shock generates a larger and more
persistent response when compared to a positive shock. Negative shocks lead to a response ap-
proximately 10% larger in magnitude when compared to positive ones.15

Finally, we search for evidence of size-dependencies in the response to a shock. We identify
two historical episodes in which the model estimates large shocks: 1980:Q2 and 2008:Q2. Then, we
ask whether a two standard deviation shock generates a different response when compared to two
times a one standard deviation shock during these times. We find little evidence of thismechanism
at play for either a positive or negative shock.

15In Section E of the Appendix, we present results on the difference between the magnitudes between
positive and negative shocks.
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Higher-Order Moment Effects of Shocks

Figure 8 shows the higher-order moment effects of shocks. For these results, we condition on
the credit crunch state, although many of the qualitative features we discuss apply to the other
times as well.
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Figure 8: IRFs of the mean, standard deviation, and 5% shortfall and longrise of the demeaned overall
factor produced by the NLDF model during the credit crunch time period in 2010. The responses to a
positive shock are shown in the top row and the responses to a negative shock are shown in the bottom
row. In the third column, the blue lines denote the shortfall response while the red lines denote the longrise
response. The shaded areas are 68% credible sets.

A positive shock leads to an increase in the mean and a decline in the volatility of the credit
factor predictive distribution, as seen on the first two columns of the figure. Moving to the last
column, we see the effects that these shocks have on the tail risk of the predictive distribution.
The shortfall increases more than the longrise does because the increase in mean and decrease in
volatility both lead to the lower tail of the distribution shifting leftward. On the other hand, these
effects partially cancel each other out on the upper end of the distribution, generating the more
muted response.

The bottom row shows the response to a negative shock. The responses flip in sign, with the
shock generating an increase in the volatility. Both the shortfall and longrise decline, with the
decline in the shortfall still greater than the decline in the longrise. Taken together, these results
suggest that a credit cycle shock produces largermoves in downside risk relative to upside risk. An
adverse credit cycle shock lowers the factor on average, and it also increases the risk of particularly
large declines due to an increase in volatility. In contrast, a positive shock increases the factor on
average, and also further decreases the risk of large declines due to a decline in volatility.
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5 Conclusion
We propose a parsimonious nonlinear dynamic factor model, that is built around a pruned second
order factor equation. In this model, the propagation of shocks is asymmetric, state-dependent
and size-dependent, and stationarity is guaranteed by construction. The application of the particle
filter to evaluate the likelihood and extract the factor allows us to augment the nonlinear factor
motion with nonlinearities in the measurement equation, which makes the model applicable to
macroeconomic environments in which variables can be constrained.

We investigate the properties of the model and illustrate the nonlinear measurement equation,
estimating the shadow rate model à la Wu and Xia (2016) with a measurement equation that speci-
fies an effective lower bound on U.S. data. We show how the extracted shadow rate factor and thus
conclusions regarding the monetary conditions differ between models: one with a nonlinear mea-
surement equation and second order factor dynamics and another that is a standard linear factor
model. The former predicts an easing of monetary conditions during the ELB period, while the
latter does not provide evidence of such.

Our credit cycle application emphasizes the importance of a second order component when
measuring the credit cycle. This nonlinearity leads to state-dependent impulse response functions
and changes in the higher-order moments in response to shocks.

There are several directions in which our work can be expanded. We mentioned already the
multidimensional factor in the main text. Another fruitful avenue is to use the nonlinear dynamic
factor model with a VAR in the same fashion as the FAVAR model (Stock and Watson, 2016).
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Appendices

A Estimation Algorithms
In this section of the Appendix, we provide further details about the two estimation algorithms
that we use. The first one is a Metropolis Hastings algorithm using the particle filter. The second
is a particle Gibbs sampling algorithm. We refer to our benchmark NLDF model, shown again in
Equation 24 for convenience.

yt = Gft + ηεt
ft = c+ fft + f st

fft = hxf
f
t−1 + σνt

f st = hxf
s
t−1 + 1

2hxx

(
fft−1

)2
.

(24)

Here, we assume that c = −1
2

hxxσ2

(1−hx)(1−h2x)
.

A.1 Metropolis Hastings with Bootstrap Particle Filter

Our Metropolis Hastings algorithm is as follows:

1. Propose new set of parameters Θprop =
{
Gprop, ηprop, hpropx , hpropxx , σ2,prop

}
• In practice, we break up the proposals into three blocks: Block 1 (factor equation)

Θprop
1 =

{
hpropx , hpropxx , σ2,prop

}
; Block 2 (measurement equation loadings)Θprop

2 = {Gprop};
Block 3 (measurement equation variances) Θprop

3 = {ηprop}. For each block, we take 50

draws, holding the parameters in the other blocks at their previously accepted values.

Θprop
i = Θcurr

i + 0.95Si,1ζ1 + 0.05Si,2ζ2, ζi ∼ N(0, I) i = 1, 2, 3, 4

• We tune the variance covariance matrix of the proposals Si,1 and Si,2 in an adaptive
fashion over the first 30, 000 draws of the algorithm. Si,1 is calculated using variance
covariancematrix from all of the previous drawsmultiplied by a scaling parameter that
decreases if the previous 250 drawswithin the block had an acceptance rate below 10%.
Si,2 is a diagonal matrix that is meant to introduce some independent noise within the
proposal. It is multiplied by a separate scaling parameter that decreases if the previous
250 draws within the block had an acceptance rate below 10%.

2. Evaluate the likelihoodof the proposedparameters using the bootstrapparticle filter (Särkkä,
2013).
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• Initialize particle filter: For particles j = 1, ..., N . To take a draw from the uncondi-
tional distribution, we simulate themodel for 500periods and use the final period of the
simulation to determine: ff,(j)0 , f

s,(j)
0 , f

s,(j)
1 . Note that fs,(j)1 is a function of ff,(j)0 , f

s,(j)
0 ,

so it is known. We set w(j)
t = 1 for all particles.

For t = 1, ..., T :

• Prediction step:

Given particles and weights at t− 1:
{
f
f,(j)
t−1 , f

s,(j)
t , w

(j)
t−1

}
(a) For particles j = 1, ..., N . Draw a new particle

{
f
f,(j)
t , f

s,(j)
t+1

}
from

f
f,(j)
t = hxf

f,(j)
t−1 + σνt

f
s,(j)
t+1 = hxf

s,(j)
t +

1

2
hxx

(
f
f,(j)
t

)2
(b) Calculate weights:

ω
(j)
t = p(yt|ff,(j)t , f

s,(j)
t ), j = 1, . . . , N

• Update step:

(a) Define normalized weights: w̃(j)
t =

ω
(j)
t w

(j)
t−1

1
N

∑
ω
(j)
t w

(j)
t−1

.

(b) Resample from multinomial distribution
{
ω
(j)
t , w̃

(j)
t

}
and set w(j)

t = 1.

• Compute conditional likelihood

p(yt|Y1:t−1) ≈
1

N

N∑
i=1

ω
(j)
t w

(j)
t−1. (25)

The overall likelihood is then p(y|Θprop
i ,Θcurr

−i ) =
∏T
t=1 p(yt|Y1:t−1).

3. We accept the proposal with probability

prob = max

{
p(y|Θprop

i ,Θcurr
−i )g(Θprop

i ,Θcurr
−i )

p(y|Θcurr
i ,Θcurr

−i )g(Θcurr
i ,Θcurr

−i )
, 1

}
(26)

where g(.) is the prior distribution.

A.2 Gibbs Sampling with Particle Smoother

Our Gibbs sampling algorithm is as follows:

1. Draw G, η given fft , fst , and yt. This is a standard linear regression model.
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2. Draw hx, hxx given σ, G, η, fft , fst , and yt.

We use a randomwalkMetropolis step to draw hx and hxx. Given the current accepted draw
of hx and hxx, our proposal is as follows:

hpropx

hpropxx

 =

 hx

hxx

+ Shζ, ζ ∼ N(0, I)

We throw away draws that violate the stationarity conditions hpropx > 1.

Given proposed hpropx and hpropxx , we calculate its likelihood. The new parameters change c
and fst .

We update:

cprop = −1

2

hpropxx σ2

(1− hpropx )
(

1− (hpropx )
2
)

and

fs,propt = hpropx f s,propt−1 +
1

2
hpropxx

(
fft−1

)2
We initialize fs,prop0 = fs0 .

We then form the likelihood of the proposal, which can be calculated in two parts. The first
is based on the measurement equation and the second is from the transition equation of the
first order factor:

yt −G
(
cprop + fft + f s,propt

)
= ηεt

fft − hpropx fft−1 = σνt

(27)

We accept the proposal with probability:

prob = max


∏T
t=1 p

(
yt|cprop, G, η, fft , f

s,prop
t

)
ptrans

(
fft |h

prop
x , σ, fft−1

)
g (hpropx , hpropxx )∏T

t=1 p
(
yt|ccurr, G, η, fft , fst

)
ptrans

(
fft |hcurrx , σ, fft−1

)
g (hcurrx , hcurrxx )

, 1


(28)

where p(yt|.) denotes the likelihood from the measurement equation, ptrans(fft |.) denotes
the likelihood from the transition equation, and g(.) is the prior distribution.

3. Draw σ2 given G, η, fft , fst , and yt.
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We draw σ2 using a random walk Metropolis step. Given the current accepted draw of σ2,
our proposal is as follows:

σ2,prop = σ2 + Sσι, ι ∼ N(0, I)

We throw out draws that are negative.

Given the proposed σ2,prop, we calculate its likelihood. The new parameters change c.

We update:

cprop = −1

2

hxxσ
2,prop

(1− hx) (1− h2x)
(29)

We then form the likelihood of the proposal, which can be calculated in two parts. The first
is based on the measurement equation and the second is from the transition equation of the
first order factor:

yt −G
(
cprop + fft + fst

)
= ηεt

fft − hxf
f
t−1 = σpropνt

(30)

We accept the proposal with probability:

prob = max


∏T
t=1 p

(
yt|cprop, G, η, fft , fst

)
ptrans

(
fft |hx, σ2,prop, f

f
t−1

)
g
(
σ2,prop

)
∏T
t=1 p

(
yt|ccurr, G, η, fft , fst

)
ptrans

(
fft |hx, σ2,curr, f

f
t−1

)
g (σ2,curr)

, 1

 (31)

where p(yt|.) denotes the likelihood from the measurement equation, ptrans(fft |.) denotes
the likelihood from the transition equation, and g(.) is the prior distribution.

4. Draw fft , f
s
t given σ, G, η, hx, hxx, and yt using the particle Gibbs sampler with ancestor

sampling. We discuss our implementation of the sampler here, but further details of the
algorithm can be found in Lindsten et al. (2014).

• Initialize particle smoother: For particles j = 1, ..., N − 1. To take a draw from the
unconditional distribution, we simulate the model for 500 periods and use the final
period of the simulation to determine: ff,(j)0 , f

s,(j)
0 , f

s,(j)
1 . Note that fs,(j)1 is a function

of ff,(j)0 , f
s,(j)
0 , so it is known.

• Draw first period: For particles j = 1, ..., N − 1. We determine ff,(j)1 , f
s,(j)
2 by simula-

tion.
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• Fix final particle: Fix ff,(N)
0 , f

s,(N)
0 , f

f,(N)
1 , f

s,(N)
1 , f

s,(N)
2 equal to ff,∗0 , fs,∗0 , ff,∗1 , fs,∗1 , fs,∗2 ,

where ∗ denotes the accepted previous draw.

• Set weights: Compute w(j)
1 =

p(y1|ff,(j)1 ,f
s,(j)
1 )∑N

jj=1 p(y1|f
f,(jj)
1 ,f

s,(jj)
1 )

for j = 1, ..., N .

For t = 2, ..., T :

• Sample indices to set ancestors for each particle: For particles j = 1, ..., N − 1. Draw
a
(j)
t from the distribution wt−1. Simulate the following:

f
f,(j)
t = hxf

f,(a
(j)
t )

t−1 + σνt

f
s,(j)
t+1 = hxf

s,a
(j)
t

t +
1

2
hxx

(
f
f,(j)
t

)2 (32)

• Fix final particle: Fix ff,(N)
t equal to ff,∗t .

• Compute auxiliary weights for fixed particle: For j = 1, ..., N . We compute the auxil-
iary weights for the fixed particle as follows:

w
aux,(j)
t = w

(j)
t−1p(yt|f

f,(N)
t , f

s,(j)
t )g(f

f,(N)
t |ff,(j)t−1 )p(yt+1|ff,(N)

t+1 , f
s,(N ′)
t+1 )g(f

f,(N)
t+1 |f

f,(N)
t )

(33)

When calculating fs,(N
′)

t+1 , we have to take into account the fact that f s,(N
′)

t+1 depends on
f
s,(j)
t . Therefore, fs,(N

′)
t+1 does not equal fs,(N)

t+1 . The formula is:

f
s,(N ′)
t+1 = hxf

s,(j)
t +

1

2
hxx

(
f
f,(N)
t

)2
(34)

Note that this formula comes from Equation 23 in the Lindsten, Jordan, Schon (2014),
"Particle Gibbs with Ancestor Sampling", Journal of Machine Learning Research paper
with lag = 2. Our model is a degenerate state space model discussed in Section 7.2 of
that paper. We can view our model alternatively as a non-Markovian model with one
factor fft . See associated discussion there.

• Sample the associated ancestor index for particle N : We sample a(N)
t from the distri-

bution wauxt . Note that we have to update fs,(N)
t+1 to make it consistent with the selected

ancestor:

f
s,(N)
t+1 = hxf

s,(a
(N)
t )

t +
1

2
hxx

(
f
f,(N)
t

)2
(35)

• Set weights: Compute w(j)
t =

p(yt|ff,(j)t ,f
s,(j)
t )∑N

jj=1 p(yt|f
f,(jj)
t ,f

s,(jj)
t )

for j = 1, ..., N .

Note that for the t = T , we do not have to update f st+1 because it is the end of the
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sample. When computing the auxiliary weights for the fixed particle, we also do not
consider the T + 1 likelihood.

• Sample selected states: Sample ∗ according to wT . Set ff,∗t , fs,∗t equal to the sampled
state.
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B Monte Carlo Results
To better understand the estimation of our model, we turn to a Monte Carlo experiment. Here,
we show that if the true data generating process is the nonlinear dynamic factor model, our esti-
mation strategy successfully recovers all parameters. We assume that the underlying model is our
benchmark NLDF model with the following parameters: c = 0, hx = 0.85, hxx = 2.15 , σ = 0.18,
diag(η) = [0.54, 0.06, 0.79, 1.08, 0.39], G = [1, 0.17, 1.5, 2.21, 0.56]. We generate 50 series of length
T = 1000, starting from ff0 = 0, fs0 = 0.

With the synthetic data in hand, we then estimate the linear factor model and our benchmark
NLDF model with a linear measurement equation. The models are estimated using the Metropo-
lis Hastings and particle filter procedure detailed in Section 2.4 with 200, 000 MCMC draws. We
assume flat priors for all of the parameters.

The parameter estimates converge to the true values under correct specification. As seen in
the left panel in Figure 9, the log likelihood is higher for the nonlinear model (vertical axis) than
it is for the linear one (horizontal axis) across all simulations. The average difference between the
log likelihoods in the nonlinear and linear models is 80 points – the difference can be as low as 48
points and as high as 127 points. Correspondingly, the mean square errors (MSE) of the factors are
smaller in the nonlinear factor version (right panel in Figure 9).16

We report the estimands of the state equation’s parameters in Figures 10 and 11. Whereas
the nonlinear factor model’s estimate for hx (y-axis) is clustered around its true value, the linear
estimate (x-axis) is about 14% more persistent. This over-persistence is compensated for with a
downward bias estimate of the factor innovation volatility. This is needed so the factor delivers
secondmoments consistent with the data. In contrast, the volatility estimate from theNLDFmodel
is around the true value. Furthermore, the second order component (hxx) is estimated close to its
true value.
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Figure 9: Performance of estimated linear and nonlinear models on simulated data

16The mean square error is defined as
∑T=1000

t=1 (f̂t|t−ft)2

T , where f̂t|t is the factor filtered from the estimated
model (linear or nonlinear), and ft is the true simulated factor.
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Figure 10: Estimation bias of linear and nonlinear models on simulated data

Figure 11: Performance of nonlinear model in estimation of hxx on simulated data
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C Further Simulation Results
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Figure 12: Unconditional distribution of the overall factor in a calibrated model. The blue line denotes
the unconditional distribution of the demeaned overall factor in the NLDF model. The dashed black line
denotes the unconditional distribution of the first order factor.
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Figure 13: Dynamics of the distribution of the demeaned overall factor at various periods after a shock in
a calibrated model. The blue line is the distribution after a negative shock and the dashed black line is the
distribution without a shock. Period 0 is the period of the shock.
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Figure 14: IRFs of themean, standard deviation, and tail risk of the demeaned overall factor in response to
a negative shock at period 0 in a calibrated model. In the third panel, the solid blue line shows the response
of the shortfall and the solid red line shows the response of the longrise.

49



D Shadow Rate: Additional Results

D.1 Details on Data Construction

We followed the approach of Wu and Xia (2016) in constructing the 1-month forward rates for 7
maturities based on the nominal yield curve data from Gurkaynak et al. (2007). We use the code
provided by Wu and Xia (2016). The end-of-month monthly data spans the period from Jan, 1990
to Sep, 2019, and the maturities used are the same as in the original paper: 3 and 6 months, 1, 2, 5,
7, and 10 years.

We download the Wu and Xia (2016) shadow rate from Cynthia Wu’s website.

U.S. Credit Growth by Sector
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-2

0

2

4

6

8

Nonfinancial Business
Household
Financial
Government

Figure 15: Normalized real credit growth by sector in the United States: 1952:Q1-2021:Q4 with NBER
recession shading. The solid blue line is nonfinancial business credit growth, the dot dashed red line is
household credit growth, the dotted magenta line is financial sector credit growth, and the dashed green
line is government credit growth.

D.2 Tailoring the Estimation to the Shadow Rate Model

We discuss here how we modify the estimation presented in Appendix Section A.1 to account for
the nonlinear measurement equation in Equation 22, reproduced below for convenience.

∆forwardht = mh +

Gh(c+ fft + fst ) + ηhεht if Ŝht >= 0.3

−mh + ηhεht otherwise
(36)

50



where c = −1
2

hxxσ2

(1−hx)(1−h2x)
, Ŝht =

∑t
τ=2

(
mh +Gh

(
c+ ffτ + fsτ

))
+ forwardh1 , ∆forwardht =

forwardht −forwardht−1, and index h stands for the maturity. Wemodel the latent factor according
to our second order dynamics:

fft = hxf
f
t−1 + σνt (37)

fst = hxf
s
t−1 +

1

2
hxx

(
fft−1

)2
Relative to the benchmark NLDF with linear measurement equation, there are three main dif-

ferences. First, we have forward rate specific constantsmh that capture the long-run mean of each
series. This is a straightforward addition to theMetropolis Hastings algorithm, andwe add a block
to the estimation procedure. Second, we have to keep track of Ŝt in the particle filter, which is the
sum of the entire path of the particle. To account for this, we add an additional component to the
particle called

Ŝ
(j)
t =

(
c+ f

f,(j)
t + f

s,(j)
t

)
+ Ŝ

(j)
t−1.

The conversion from Ŝ
(j)
t to Ŝh,(j)t for each maturity h is straightforward from their respective

formulas.
Finally, the measurement equation that we use to evaluate the weight of the particle in the

particle filter changes depending onwhether Ŝh,(j)t is above or below 0.3. This affects the prediction
step in our algorithm.

D.3 Estimation of the Linear Model

We also estimate a linear version of the model which removes the nonlinearity in the measurement
equation and only allows for first order factor dynamics. We use the same Metropolis Hastings
scheme as laid out in Appendix Section A.1, with two differences. First, we have the extra param-
eters mh that we estimate as an additional block. Second, we use the Kalman Filter instead of the
particle filter to estimate the model, as it is now a linear Gaussian state space model.
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D.4 Parameter Estimates

Table 2: Parameter Estimates

Prior NLDFM and ELB Linear factor and ELB Linear
hx N(0.5, 1) 0.192 0.183 0.188

( 0.132 , 0.249 ) ( 0.118 , 0.242 ) ( 0.126 , 0.261 )
hxx N(0, 5) 0.272 0.000 0.000

( -0.010 , 0.474 ) ( 0.000 , 0.000 ) ( 0.000 , 0.000 )
σ2 IW (v = 4, η = 1) 0.050 0.055 0.031

( 0.045 , 0.056 ) ( 0.048 , 0.062 ) ( 0.026 , 0.035 )
G1 N(0, 5) 1.000 1.000 1.000

( 1.000 , 1.000 ) ( 1.000 , 1.000 ) ( 1.000 , 1.000 )
G2 N(0, 5) 1.171 1.110 1.290

( 1.121 , 1.218 ) ( 1.059 , 1.174 ) ( 1.209 , 1.383 )
G3 N(0, 5) 1.410 1.354 1.623

( 1.356 , 1.464 ) ( 1.306 , 1.422 ) ( 1.542 , 1.735 )
G4 N(0, 5) 1.466 1.385 1.704

( 1.418 , 1.513 ) ( 1.300 , 1.483 ) ( 1.607 , 1.827 )
G5 N(0, 5) 1.022 0.947 1.123

( 0.944 , 1.099 ) ( 0.860 , 1.034 ) ( 1.011 , 1.248 )
G6 N(0, 5) 0.779 0.775 0.809

( 0.708 , 0.871 ) ( 0.682 , 0.878 ) ( 0.686 , 0.920 )
G7 N(0, 5) 0.635 0.616 0.575

( 0.580 , 0.706 ) ( 0.537 , 0.712 ) ( 0.451 , 0.685 )
η21 IW

(
v = 4, η = 1

5Std
(
∆forward1

))
0.015 0.016 0.019

( 0.013 , 0.016 ) ( 0.014 , 0.017 ) ( 0.018 , 0.021 )
η22 IW

(
v = 4, η = 1

5Std
(
∆forward2

))
0.008 0.008 0.010

( 0.007 , 0.009 ) ( 0.008 , 0.009 ) ( 0.009 , 0.011 )
η23 IW

(
v = 4, η = 1

5Std
(
∆forward3

))
0.002 0.001 0.002

( 0.001 , 0.002 ) ( 0.001 , 0.002 ) ( 0.002 , 0.003 )
η24 IW

(
v = 4, η = 1

5Std
(
∆forward4

))
0.013 0.013 0.015

( 0.012 , 0.015 ) ( 0.012 , 0.015 ) ( 0.014 , 0.017 )
η25 IW

(
v = 4, η = 1

5Std
(
∆forward5

))
0.043 0.045 0.055

( 0.039 , 0.047 ) ( 0.041 , 0.051 ) ( 0.050 , 0.061 )
η26 IW

(
v = 4, η = 1

5Std
(
∆forward6

))
0.057 0.058 0.070

( 0.052 , 0.064 ) ( 0.052 , 0.064 ) ( 0.065 , 0.078 )
η27 IW

(
v = 4, η = 1

5Std
(
∆forward7

))
0.063 0.064 0.071

( 0.058 , 0.068 ) ( 0.059 , 0.072 ) ( 0.065 , 0.079 )

Median values of the posterior are reported. 10% and 90% in brackets. Log likelihoods are reported at the
mode.
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Prior NLDFM and ELB Linear factor and ELB Linear
m1 N(−0.019, 1) -0.019 -0.020 -0.019

( -0.021 , -0.017 ) ( -0.022 , -0.017 ) ( -0.024 , -0.014 )
m2 N(−0.019, 1) -0.021 -0.020 -0.019

( -0.023 , -0.019 ) ( -0.022 , -0.018 ) ( -0.024 , -0.015 )
m3 N(−0.019, 1) -0.022 -0.021 -0.019

( -0.025 , -0.020 ) ( -0.024 , -0.019 ) ( -0.024 , -0.015 )
m4 N(−0.019, 1) -0.022 -0.020 -0.019

( -0.025 , -0.019 ) ( -0.024 , -0.018 ) ( -0.024 , -0.015 )
m5 N(−0.019, 1) -0.010 -0.008 -0.019

( -0.012 , -0.008 ) ( -0.011 , -0.006 ) ( -0.024 , -0.014 )
m6 N(−0.019, 1) -0.007 -0.007 -0.019

( -0.009 , -0.005 ) ( -0.009 , -0.005 ) ( -0.025 , -0.014 )
m7 N(−0.019, 1) -0.005 -0.005 -0.019

( -0.007 , -0.004 ) ( -0.007 , -0.004 ) ( -0.024 , -0.014 )
LL 723.731 723.742 636.693

Median values of the posterior are reported. 10% and 90% in brackets. Log likelihoods are reported at the
mode.
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E Nonlinear Credit Cycle: Additional Results

E.1 Details on Data Construction

Ourdata runs from1952:Q1 to 2021:Q4 at a quarterly frequency. Our data are from theZ.1 Financial
Accounts and downloaded from FRED. These data are not seasonally adjusted, and we seasonally
adjust them using the Census X-13 Seasonal Adjustment procedure implemented in Eviews 12. We
deflate the seasonally adjusted data by the seasonally adjusted GDP deflator to turn them into real
values.

For nonfinancial business debt, we use the category Nonfinancial Business, Debt Securities and
Loans, Liability, Level (BOGZ1FL144104005Q). For household debt, we use the category House-
holds and Nonprofit Organizations, Debt Securities and Loans, Liability, Level (TCMILBSHNO).
For financial sector debt, we use the category Domestic Financial Sectors, Debt Securities and
Loans, Liability, Level (TCMDODFS). Finally, for government debt, we sum the categories Fed-
eral Government, Debt Securities and Loans, Liability, Level (FGTCMDODNS) and State and Local
Governments, Debt Securities and Loans, Liability, Level (SLGTCMDODNS).We seasonally adjust
the federal and state and local government debt separately before summing them up.

E.2 Difference Between Positive and Negative Shocks
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Figure 16: Credit BoomState (mid 2000s): Draw-by-drawdifferences betweenpositive andnegative shocks
on the mean, standard deviation, and tail risk responses. Shaded areas denote 68% credible sets.
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Figure 17: Credit Crunch State (2010): Draw-by-draw differences between positive and negative shocks
on the mean, standard deviation, and tail risk responses. Shaded areas denote 68% credible sets.
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Figure 18: Credit Mix State (Before the early 1990s recession): Draw-by-draw differences between positive
and negative shocks on the mean, standard deviation, and tail risk responses. Shaded areas denote 68%
credible sets.
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E.3 Parameter Estimates

Table 3: Parameter Estimates

Prior NLDFM
hx N(0.5, 1) 0.922

( 0.901 , 0.938 )
hxx N(0, 5) -0.130

( -0.223 , -0.053 )
σ2 IW (v = 4, η = 1) 0.062

( 0.050 , 0.077 )
G1 N(0, 5) 1.000

( 1.000 , 1.000 )
G2 N(0, 5) 1.318

( 1.162 , 1.470 )
G3 N(0, 5) 0.983

( 0.881 , 1.100 )
G4 N(0, 5) -0.220

( -0.327 , -0.116 )
η21 IW (v = 4, η = 1) 0.626

( 0.551 , 0.698 )
η22 IW (v = 4, η = 1) 0.282

( 0.234 , 0.347 )
η23 IW (v = 4, η = 1) 0.592

( 0.537 , 0.651 )
η24 IW (v = 4, η = 1) 0.968

( 0.888 , 1.05 )

Median values of the posterior are reported. 16% and 84% in brackets.
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